### Vortices associated with the wavefunction of a single electron emitted in slow ion-atom collisions

The time dependent Schrödinger equation of a single electron at the potential of two nuclei moving at a classical trajectory can be solved at a regularized lattice (RLTDSE). The free electron wave function shows vortices, which are lines with zero probability density surrounded by a flux. We did a kinematically complete measurement of the reaction 10 keV/u He In contrast to the theoretical predictions, which had been available prior our measurements, we found those minima not in the scattering plane but in the plane perpendicular to the direction of impact. To reproduce these findings, our coworkers from the Universities of North Texas and Tennessee developed a new theoretical approach. In the first step it describes the correlated 2 electron wave function by quasi-molecular states of He The figure shows the transversal electron distribution for large scattering angles of 2.25 - 3.25 mrad with the projectile being scattered downwards (negative x axis). Electron velocities are scaled to the projectile velocity (v However, with the improved statistics and resolution of our experimental results we see the higher angular momentum contributions also for other regimes of scattering angles or other impact velocities. But they all look different because the relative phases of the quasi-molecular states considerably change with these parameters. Publications
Physical Review Letters, 112, 083201 (2014) Schmidt2014PRL.pdf A poster on the topic can be downloaded here |