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Abstract
Experimental results on partial photo-ionization cross sections of helium are
analysed in the light of recent advances in the semiclassical theory of two-
electron atoms. Byun et al (2007 Phys. Rev. Lett. 98 113001) predict that the
total photo-ionization cross section below the double-ionization threshold can,
semiclassically, be described in terms of contributions associated with classical
orbits starting and ending in the triple collision. The necessary modifications
of the semiclassical theory for partial cross sections are developed here. It
is argued that partial cross sections are also dominated by the triple collision
dynamics. The expected semiclassical contributions can be identified in the
Fourier transformation of the experimental data. This clearly demonstrates
for the first time the validity of the basic assumptions made by Byun et al.
Our findings explain furthermore in a natural way the self-similar structures
observed in cross section signals for different channel numbers.

(Some figures in this article are in colour only in the electronic version)

The rich resonance spectrum of two-electron atoms below the double ionization threshold
has been explored both experimentally and numerically up to principal quantum numbers
N ≈ 13–17 of the remaining one-electron atom after ionization [2–10]. Progress towards
even higher N values thus moving closer to the three-particle break-up threshold E = 0
is hampered experimentally by the limited photon energy resolution and numerically by
the high-dimensionality of the system. The complexity of the classical dynamics and the
large number of degrees of freedom of the system have so far also restricted semiclassical
calculations of individual resonances to subsets of the full spectrum and again small N values
[11, 12]. Until recently, it has been thought that similar restrictions also apply to a semiclassical
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treatment of total and partial photo-ionization cross sections for E < 0. The resonance density
increases dramatically for energies approaching the double-ionization threshold and individual
resonances overlap and interfere leading to a strongly fluctuating cross section signal which
decreases in amplitude towards the threshold [4–6]. The strong interaction between resonance
poles can be regarded as a signature of the underlying chaotic classical dynamics. It is
also reflected in the resonance spacing distribution which shows a gradual transition towards
that of the random matrix theory approaching the double ionization threshold from below
[2, 6, 10].

We will consider in the following partial photo-ionization cross sections of two-electron
atoms in the asymptotic regime E → 0−. Near the threshold, electron–electron correlation
effects dominate which can be observed directly in scaling laws such as Wannier’s celebrated
threshold law for double ionization [13, 14] or in slow electron ionization experiments
taken across the threshold [15]; a cusp-like structure in this ‘zero-kinetic energy’ ionization
cross section is observed which has been interpreted in terms of classical escape along the
Wannier ridge leading again to a threshold law with Wannier’s exponent both below and above
E = 0 [16]. Zero-kinetic energy spectroscopy below the double ionization threshold does,
however, not resolve the complex resonance structure of the three-particle compound and
the experimental signal contains thus little information about the mostly chaotic scattering
dynamics of the underlying classical three-body Coulomb system.

Semiclassically, total photo-ionization cross sections can be described in terms of closed
orbit theory (COT). The theory was developed for systems such as hydrogen in external fields
[18, 17] or in the context of quantum defect theory for many electron atoms [19–21] for
which the dynamics near the origin is regular. Recently, the necessary modifications for a
closed orbit treatment of the total photo-ionization cross section for two-electron atoms have
been presented in [1]. The starting point of a COT is the total cross section in the dipole
approximation written in the form

σ(E) = −4παh̄ω Im〈Dφi |G(E)|Dφi〉 (1)

where φi is the wavefunction of the initial bound state, D = π · r is the dipole operator, π

is the polarization of the incoming photon with angular frequency ω and G(E) is the Green
function of the system at energy E = Ei + h̄ω; furthermore α = e2/h̄c is the fine-structure
constant. In the semiclassical limit, the support of the wavefunction φi shrinks to zero relative
to the size of the system reducing the integration in (1) to an evaluation of the Green function at
the origin in the limit E → 0−. Writing the Green function in a semiclassical approximation
[18, 17, 22] thus leads to a summation over contributions from classical trajectories starting
and ending at the origin.

For two-electron atoms, the origin r = (r1, r2) = 0 represents the point where both
electrons reach the nucleus simultaneously, that is, all three particles collide. Note that we
work in the infinite nucleus mass approximation, that is, the position of the nucleus is fixed
at the origin. The presence of such triple collisions demands a careful re-evaluation of COT
in the light of the three-body dynamics near the origin. The triple collision itself forms a
non-regularizable singularity of the classical equations of motion, that is, trajectories ending
in a triple collision cannot be continued through the singularity. Trajectories coming close to a
triple collision become extremely sensitive to initial conditions and nearby orbits approaching
the collision point can be scattered into arbitrarily large angles. The triple collision singularity
is in that sense infinitely unstable. This is in contrast to binary collisions which can be
regularized by a suitable space and time transformation such as described in [23] leading to a
smooth phase-space flow in the vicinity of the collision.
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A semiclassical treatment of photo-ionization starting from (1) needs to take into account
classical trajectories beginning and ending near the three-body collision R = 0 where
R = (

r2
1 + r2

2

)1/2
is the hyper-radius; the set of closed orbits usually employed in COT,

namely those emerging out of and returning exactly to the triple collision point R = 0,
are infinitely unstable and give a vanishing contribution to semiclassical expressions. These
closed triple collision orbits (CTCO) act, however, as guiding centres for phase-space regions
leaving and returning to the triple-collision region. Taking the semiclassical limit E → 0− is
equivalent to R0 → 0 in appropriately rescaled coordinates where R0 characterizes the size
of the initial wavefunction φi . By considering these limits carefully, it has been shown in [1]
that the amplitude of the fluctuations in the total photo-ionization cross section decays with a
power-law according to σf l ∝ |E|µ with predicted exponent

µ = 1

4
Re

[√
100Z − 9

4Z − 1
+ 2

√
4Z − 9

4Z − 1

]
(2)

with Z, the charge of the nucleus. One obtains, for example, µ = 1.305 89 . . . for helium with
Z = 2. The exponent can be obtained as a combination of stability exponents of the triple-
collision singularity and differs from Wannier’s exponent which describes double ionization
processes. The Fourier components of the fluctuations can furthermore be associated directly
with CTCOs. This behaviour has been confirmed by quantum calculations in collinear helium,
the restricted three-body Coulomb problem where the dynamics takes place along a common
axis [1].

In this letter, we analyse the experimental data on partial photo-ionization cross sections
for helium presented in [4, 5] (and shown in figure 1(a)), in the light of the theoretical
predictions [1]. The experiment was conducted using synchrotron radiation with a resolution
of 4 meV revealing partial cross sections up to energies 78.85 eV above the ground state
and reaching ionization channels of the order N ≈ 13. The kinetic energy of the outgoing
electron was measured which yields information on the state of the remaining He+ ion; for
experimental details, see [4]. Reference [5] notes, in particular, that the cross sections σN

for different channels show similar patterns up to an overall shift in energy, see for example
the data for N = 4 and N = 5 in the region E < −0.02 au in figure 1(a) (in figure 1 and
throughout the paper, atomic units (au) are employed). The phenomenon could be reproduced
in R-matrix calculations published in the same communication. In figure 1(b), the fluctuating
part of the experimental partial cross sections is shown after subtracting numerically a smooth
background contribution.

In the following, we will argue semiclassically that CTCOs also dominate the fluctuations
in partial ionization cross-sections and show that collision orbits can actually be detected in the
experimental data. This leads naturally to a semiclassical explanation for the similarities seen
in the cross-sections σN for different N. The experimentally observed slight shifts in energy
between the patterns in different partial cross sections can then be explained in terms of phase
differences between direct and indirect contributions as discussed in more detail later. The
experimental data clearly show a decrease in the amplitude of the fluctuations as E → 0−;
the exponents characterizing the mean power-law decay of the fluctuations can at present not
be extracted from the data with sufficient accuracy to allow a comparison with theoretical
predictions; they will thus not be considered here. A detailed theory of threshold laws for
partial cross sections will be presented elsewhere [24].

We start by expressing the partial cross sections σN in terms of the retarded Green
function G(E), from which a semiclassical theory can be developed. The outgoing solution
of the inhomogeneous Schrödinger equation

(E − H)|χ〉 = D|φi〉 (3)
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Figure 1. (a) Partial cross sections as measured in [4, 5] (the jump in the signal for N = 4, 5
at E ≈ −0.02 au is due to experimental reasons; the signal for N = 4 was in addition shifted
down towards N = 5). (b) The fluctuating part of the cross sections for different channel numbers
obtained from (a) after subtracting a smooth background contribution.

is written as

|χ〉 = G(E)|�i〉 with |�i〉 = D|φi〉, (4)

and using the notation introduced after equation (1). In the asymptotic limit R → ∞
which corresponds for fixed E < 0 to either r1 or r2 → ∞, the Schrödinger equation (3) is
homogeneous and separable. One obtains asymptotically for the inhomogeneous solution |χ〉
in the ionization channel (Nλ)

〈r1Nλ|χ〉 = 〈r1Nλ|G(E)|�i〉 ∝ f +
N(r1) for r1 → ∞ (5)

where λ = {LMl1l2} denotes the quantum numbers describing angular momenta and N is the
principal quantum number of the remaining ion; furthermore, f +

N(r1) is the outgoing Coulomb
function

f +
N(r1) = exp

[
i

(
kNr1 +

Z − 1

kN

ln r1

)]
(6)

with kN = √
2(E − EN), the momentum of the outgoing electron. After writing the cross

section as a flux through the surface R = const, taking the limit R → ∞, and using the
asymptotic form of the inhomogeneous solution (4) as given in (5), we express the partial
cross section σN in the form [25]

σN =
∑

λ

σNλ =
∑

λ

2παωkN lim
r1→∞ |G(r1Nλ;E)|2 (7)

where G(r1Nλ;E) = 〈r1Nλ|G(E)|�i〉 and σN becomes independent of r1.



Fast Track Communication F161

The matrix elements G(r1Nλ;E) of the Green function can, in semiclassical
approximation, be described in terms of classical trajectories starting at R � R0 near the
origin and reaching r1 → ∞ with fixed energy EN of the hydrogen-like atom and fixed
quantum numbers λ, thus determining the kinetic energy εN = k2

N

/
2 of the escaping electron.

For details see [24]; a similar treatment applied to transport in quantum wires with fixed
channel numbers can be found in [26]. We will distinguish direct escape leading from the
initial region R < R0 directly to ionization and indirect contributions from trajectories entering
into a predominately chaotic phase-space region before ionization, that is,

G(r1Nλ;E) = Gdir(r1Nλ;E) + Gind(r1Nλ;E). (8)

The cross section σNλ can now be written in terms of a smooth background part and a
fluctuating contribution according to σNλ = σ 0

Nλ + σ
(f l)

Nλ where

σ 0
Nλ = 2παωkN |Gdir(r1Nλ;E)|2 (9)

σ
(f l)

Nλ = 4παωkN Re[G∗
dir(r1Nλ;E)Gind(r1Nλ;E)]. (10)

In (10), the term |Gind|2 is neglected as it contains contributions from pairs of indirect
trajectories which give rise to lower order corrections in the asymptotic limit |E/EN | 	 1.

We turn now to a brief discussion of the classical dynamics in two-electron atoms. By
introducing the scaling transformation [23]

r = r̃/|E|; p =
√

|E|p̃; S = S̃/
√

|E|, L = L̃/
√

|E|, (11)

one studies the dynamics at fixed energy E = −1 where r̃, p̃ denote the scaled coordinates
and momentum and L̃ is the total scaled angular momentum. The region R � R0 containing
the initial state φi shrinks according to R̃0 = |E|R0 → 0 for E → 0−, that is, the initial
conditions approach the triple collision. Likewise, the kinetic energy of the outgoing electron
diverges according to ε̃N = εN/|E| for fixed N. Expressing the angular momentum in scaled
coordinates, we have L̃ → 0 as E → 0 for fixed L; the classical dynamics takes place
closer and closer to the zero angular momentum manifold. It can therefore asymptotically be
characterized by trajectories in the invariant subspace L̃ = 0 which has only three degrees
of freedom [12]. The part of the dynamics contributing to the semiclassical Green function
G = Gdir + Gind is in scaled coordinates formed by trajectories starting closer and closer
to the triple collision R = 0 as |E| ∝ R̃0 → 0. The triple collision singularity R = 0
itself has a non-trivial structure and is equivalent to the phase-space dynamics at E = 0.
We will here describe only those features of the dynamics near R = 0 which are important
for understanding the semiclassical approximations; for more details see [12, 27, 28]. Most
initial conditions near the triple collision will give rise to trajectories leading to immediate
ionization of one electron. Direct orbits escaping with kinetic energy εN will contribute
to the direct escape term Gdir; an example of such a trajectory (dashed line) is shown in
figure 2(a). Only a fraction of the phase space near R = 0 can enter a chaotic scattering
region; these orbits all move out along the so-called Wannier orbit (WO), the trajectory of
collinear and symmetric electron dynamics with r1 = r2. An example of such an indirect orbit
is shown in figure 2(a) (thick full line). Likewise, trajectories inside the chaotic phase space can
only leave this region after approaching the triple collision along the WO. Escaping from the
triple-collision region towards ionization with asymptotic kinetic energy ε̃N = εN/|E| → ∞
as E → 0− can be achieved only by coming closer and closer to the triple collision. The point
of closest approach, R̃N , of trajectories escaping with kinetic energy ε̃N vanishes for fixed
N like R̃N ∝ |E|. The indirect part of the Green function Gind(N) is thus semiclassically
described in terms of orbits starting and ending (in scaled coordinates) closer and closer to the
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Figure 2. Triple collision dynamics and closed triple collision orbits: (a) trajectories starting near
the triple collision point r1 = r2 = 0 and leading to ionization with fixed energy of the escaping
electron; dashed (green) line: direct path; thick full (red) line: indirect path, here close to the
CTCO c + −c; (b) some short CTCOs together with binary symbol code.

triple collision before escaping with kinetic energy ε̃N . These trajectories approach a proper
CTCO asymptotically. The phase-space regions contributing to the partial Green function
Gindir(N) can thus be characterized in terms of CTCOs in the same way as the total cross
section [1]. Triple collision orbits only occur in the so-called eZe space [12], a collinear
subspace of the full three body dynamics where the two electrons are on opposite sides of
the nucleus [23]. As R̃0, R̃N → 0, only orbits coming close to the eZe space can start and
return to the triple collision and they will do so in the vicinity of a CTCO. The dynamics in the
eZe space is relatively simple as it is conjectured to be fully chaotic with a complete binary
symbolic dynamics. The symbolic coding of a trajectory is here defined as:

−: electron 1 collides with the nucleus, i.e. r1 = 0;
+: electron 2 collides with the nucleus, i.e. r2 = 0;
c: triple, i.e. collision.

The completeness of the symbolic dynamics implies that there is exactly one CTCO for every
finite binary symbols string; the shortest is the WO with code cc. In figure 2(b), some short
CTCOs are shown; note that orbits whose symbol code is related by the operation + ↔ − are
mapped onto each other by the particle exchange symmetry r1 ↔ r2 and are thus equivalent.

CTCOs have been shown to be important for the total cross section [1] giving the main
contributions in a modified semiclassical closed orbit treatment of photo-ionization. The
fact that CTCOs also enter partial cross section here is due to the above-mentioned escape
mechanism which is special to two-electron atoms. Swarms of indirect trajectories starting at
R = R0, following a similar path in the chaotic region and then escaping with fixed kinetic
energy εN can for E → 0 be linked to a single CTCO together with a direct-escape orbit.
Likewise, the phase-space region leading from R < R0 to direct escape can be represented by
a single trajectory. We thus write

Gdir ≈ A0(Nλ)exp(iS0(r1Nλ;E) − iν0(r1Nλ;E)π/2); (12)

Gind ≈ exp(iS0(r1Nλ;E) − iν0(r1Nλ;E)π/2)
∑

CTCO

Aj(Nλ;E)exp(iSj (E) − iνjπ/2).

(13)
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Here S0, ν0 are the action and Maslov index along the direct orbit, respectively, and Sj , νj are
those along a CTCO starting from and ending in the triple collision4. The initial wavefunction
�i and the dynamics in phase space leading to direct orbits is not sensitive to the threshold
energy E = 0. The pre-factor A0 will thus pick up a smooth energy dependence and can be
treated as constant at the threshold. The singular behaviour of the classical dynamics near the
triple collision for CTCO contributions leads to a universal scaling behaviour of the terms Aj

as E → 0− as described in [1]; the semiclassical analysis suggests the same scaling law as
for the total cross section, that is,

Aj(Nλ;E) = aj (Nλ)|E|µ (14)

for E → 0− and fixed N with exponent given by equation (2). From (7), (10), (12), (13) and
(14), we obtain an approximation to the fluctuating part of the partial cross sections in the
form

σ
(f l)

N ≈ 4παωkN |E|µ Re

( ∑
CTCO

Aj (N)exp(izS̃j − iνjπ/2)

)
(15)

where the pre-factors Aj (N) are of the form Aj (N) = ∑
λ aj (Nλ)A0(Nλ) and z = 1/h̄

√|E|;
note that the Aj (N) are in general complex valued and will add extra (energy independent)
phases.

The semiclassical treatment above suggests that a Fourier transformation of σ
(f l)

N in terms
of the variable z would reveal peaks at the actions of classical CTCOs. Such an analysis has
been carried out using the experimental data from [4, 5] setting the origin of the energy scale
at the double ionization threshold, that is, 79.0052 eV above the ground state of helium. After
subtracting a smooth background by fitting a low-order polynomial to the experimental data,
the fluctuating signal as shown in figure 1(b) is transformed using the Lomb algorithm [29],
a Fourier transform technique particularly useful for unevenly spaced data sets. (Note that
the experimental data are taken at uniform steps in E which leads to an increasing step-size
in z.) The peak heights in the experimental partial cross sections are roughly of the same size
for fixed energy independent of N. The corresponding Fourier signals thus show structures
of similar size, see the inset in figure 3; to enhance the resolution, we averaged over the
transformed cross sections for N = 4 − 8 for which data sets in energy intervals of the same
length are available. The resulting averaged Fourier signal is shown in figure 3 together with
the values of the actions of short CTCOs such as depicted in figure 2(b).

Despite the fact that the energy range available is rather limited, there are clear correlations
between the positions of the pronounced peaks and the actions of CTCOs (note that the high-
resolution Fourier signal presented in [1] for the total cross section was obtained using a much
larger energy range—up to N = 50—in the collinear eZe model). The Fourier signal shown in
figure 3 is a clear indication that photo-ionization cross sections of three-dimensional helium
are indeed dominated by the triple collision dynamics in the collinear eZe subspace. The
similarities in the partial cross sections noted in [5] are now naturally explained in terms of
the semiclassical expansion (15); the dominant terms contribute asymptotically with the same
phase—the actions of CTCOs—which will produce similar modulations in the overall signal
for different N. The slight energy shifts observed in the cross section pattern when comparing
signals for nearby N values as can be seen figure 1 are caused by energy independent phases
in the Aj(N)’s entering equation (15); a detailed analysis will be presented in [24].

4 We note that extra phase contributions arise due to the stationary phase approximation leading to the fixed kinetic
energy condition in the outgoing channel; these phases are not energy dependent and are here absorbed in the
pre-factors.
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Figure 3. The Fourier spectrum of the fluctuating part of the partial cross section in figure 1
averaged over N = 4 − 8; the actions of CTCOs are marked on the axis together with their
respective binary symbol code. Inset: individual Fourier signals.

Due to the degeneracy of the c + c and c − c orbits related by particle exchange symmetry,
the peak associated with the code + is about twice as high as the WO peak. A similar
phenomenon was observed for the total cross section in [1]. Otherwise, the semiclassical
amplitudes decrease in general exponentially with the length of the symbol code which can
also be seen in the Fourier data. Furthermore, a peak at an action smaller than that of the
shortest CTCO, the WO with action S̃/2π = 3.5, can be observed in figure 3. We note that
the peak is at S̃/2π = √

2, which is the action of the asymptotic threshold orbit where the
outer electron escapes with zero kinetic energy leaving the inner electron at a total energy
ẼN = −1. The peak may thus stem from non-perfect cancellations between actions for direct
and indirect contributions especially near the channel thresholds. It is a feature special to
partial cross sections and is not expected to be observed in total photo-ionization signals.

In conclusion, we show that the fluctuations in the partial photo-ionization cross section in
helium below the double ionization threshold are semiclassically dominated by contributions
from closed triple collision orbits. This explains naturally the similarities observed in different
partial cross sections and is a clear evidence that both partial and total cross sections are
dominated by the low-dimensional collinear eZe dynamics [1]. It is at present not possible
to extract threshold laws such as stated in equation (14) from the data; a detailed account of
the theory including the N-dependence of the amplitude terms due to the direct and indirect
contributions will be presented elsewhere [24].
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