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Abstract
We have applied a recently developed computational method to an experimental puzzle that
involves a slow outgoing electron that is scattered by a high-energy Auger electron. Although
the experiment seemed to be in a regime accurately described by classical mechanics, such
classical calculations could not accurately model the angular distribution of the electron pair.
Using the wavefunction from our calculations to generate the energy and angular distributions
of the two electrons, we have compared our results to measurements performed at the
Advanced Light Source. We have obtained good agreement between the experiment and our
quantum results, attributing the poor classical result to the small number of angular momenta
in the wavefunction. We have included predictions on how measurements depend on the Auger
energy and/or the photoelectron energy.

(Some figures may appear in colour only in the online journal)

1. Introduction

The interaction between two continuum electrons can lead
to interesting physical processes. Often, the theoretical or
computational treatment of two continuum electrons can
be very challenging. An example of an interesting but
computationally difficult situation is the angular distribution
that results when the two electrons sequentially leave the
atom as in [1]. In this experiment, a neon atom absorbs an
x-ray so that a 1s electron leaves the atom with ∼2 eV of
energy; after a short time, the Ne core emits an Auger electron
of energy ∼ 800 eV (∼29.4 au). The Auger electron has
substantially more energy than the photoelectron which means
it necessarily passes the photoelectron at a distance depending
on the separation of emission times. This gives rise to the
possibility for interesting three-body interactions involving the
two continuum electrons and the Ne2+ ion.

Post collision interaction effects in photoionization have
been extensively studied using experimental and/or theoretical
methods [2–7]. For the case of Ne, the authors of [4–6]
showed that energy shifts and the escape probability for the
photoelectron are consistent with the sudden-approximation;
in this approximation, the potential of the photoelectron
suddenly changes from −1/r to −2/r after the Auger electron
is emitted. The electron–electron interaction leads to shifts of
the energy distribution of the individual electrons and can even
lead to recapture of the photoelectron [8, 9].

The energy distribution of the photoelectron was correctly
explained many years ago [10, 11]. Penent et al [7] used a
technique developed in [12] to measure both of the electron
energies in coincidence, showing the correlation between the
two energies. Typically, the photoelectron shifts to lower
energy and the Auger electron is shifted to higher energy. The
changing energy distribution has been described by various
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approximate treatments of the electron–electron interaction.
However, the angular distribution of the photoelectron relative
to the direction of the Auger electron is more difficult to
explain because it involves the close approach of two electrons.
The angular correlation between the electrons was studied
theoretically for the case of equal or nearly equal continuum
energies [13, 14]. Scherer et al [15] studied this regime in Xe
and their results were consistent with the quantum calculations.
However, their results were also consistent with classical
calculations because the measurements were over a limited
angular region.

The new feature of [1] was that the distribution of the
electrons with regards to the angle between their emission
(or, equivalently, the cosine of this angle) was measured in
a region where the approximations in [13, 14] do not apply.
Existing quantum theories were derived for the case where
all particles are weakly interacting or only one of the pair of
particles is strongly interacting [16]. For the case of [1], there
were two pairs of strongly interacting particles (the Auger
electron with the photoelectron and the photoelectron with
the Ne2+ core)5. In an attempt to understand the measured
distributions in [1], a classical trajectory Monte Carlo (CTMC)
calculation was performed for the parameters relevant to the
experiment. While the energy distribution of the photoelectron
was accurately reproduced, the angular distribution in the
experiment substantially differed from the CTMC calculation.
This was something of a puzzle since both electrons were in the
regime where the de Broglie wavelength was small compared
to the interaction distances.

In this paper, we extend the numerical treatment
of two electrons developed in [17] to describe this
system. Robicheaux [17] described how to solve the two-
electron Schrödinger equation using a discrete variable
representation for the cos(θ12) operator. In conjunction with a
Numerov approximation for the radial coordinates, computing
the wavefunction under extreme conditions for the two
electrons became possible without needing extreme resources.
Extending [17] to treat the sequential electron ejection allows
us to quantitatively compare a fully quantum calculation
to the measurement. We find good agreement between the
calculation and the experimental results. Our main goal is not
simply to obtain good agreement between measurements and
calculations but also to understand the origin of the features
measured. Another important goal is to use the calculation to
understand the trends of this system and to predict how the
measurements depend on physical parameters.

We compare our calculations to new experimental results
obtained at the Advanced Light Source. As in [1], we used
cold target recoil ion momentum spectroscopy (COLTRIMS)
to study the continuum correlation between the photoelectron
of core-photoionized neon and the subsequent Auger electron.
The experimental technique was essentially identical to

5 For example, equation (26) of the second part of [16] is a direct derivation
from equation (21) of the first part of [16]. To be valid, the conditions in
equation (16a) of the first part of [16] must hold. For the situation in [1] and
this paper, this means |PE| between either electron and the Ne2+ ion must be
much less than their KE. In [1], the |PE| was larger than the KE and in this
paper this means that the part of the wavefunction with r < 30 au for the
photoelectron has |PE| greater than the KE.

that in [1] except we used circularly polarized photons at
slightly higher energy. We simultaneously measured both the
photoelectron (directly) and the Auger electron (indirectly)
following core photoionization of neon at 1.99 eV (∼0.073 au)
above threshold; the present measurements have much better
statistics than [1].

Atomic units are used except where explicitly noted
otherwise.

2. Basic theory

This section describes the numerical method we used to
compute physical properties of this system. We recast the
time-dependent Schrödinger equation for the problem of a
photoelectron with the subsequent Auger decay as three
coupled channels: (1) photoelectron with a 1s2s22p6 core,
(2) photoelectron plus photon with 1s22s22p5 core, and
(3) photoelectron plus the Auger electron with 1s22s22p4

core. Since channels 2 and 3 do not interact and channel
1 irreversibly decays into channels 2 and 3, we can use
second-order perturbation theory to formally eliminate the
coupling [18].

For the experimental results below, the most important
part of the interaction occurs when both electrons are well
outside of the core region. This allows two approximations
which only slightly change the computed results but lead to a
vast simplification. The first change was to use total L = 0
wavefunctions for the outgoing two-electron wavefunction
instead of L = 0, 1, 2, or 3 for the actual atom. The total
angular momentum of the Ne wavefunction is L = 1 since
it is a single photon transition from the ground state, but the
Ne2+ core can have angular momentum which means that
the total angular momentum of the outgoing pair can have the
range 0–3. This allows us to decrease the coupled channels
by a large factor and should be accurate since the electron–
electron interaction occurs over large distances (100 or more
au). The other change was to approximate the Auger decay
as a separable function which is only inaccurate for the part
of the wavefunction with both electrons inside ∼2 au; since
the photoelectron has an average r of ∼50 au when the Auger
decay occurs, this should also be a good approximation.

2.1. Reformulation into inhomogeneous Schrödinger equation

In this section, we reformulate the time-independent
Schrödinger equation into a time-dependent equation with
a source term. This time-dependent Schrödinger equation
contains the 1/r12 operator and, thus, is not perturbative
with respect to the interaction between the photoelectron and
Auger electron. As described at the end of this section, the
approximation with our method is due to an incorrect treatment
of the two continuum electrons when both electrons are within
∼1 au of the nucleus. For the case considered in this paper, the
Auger electron is typically emitted when the photoelectron is
far from the nucleus; thus, this should be a good approximation.

We first derive the effect of the Auger decay on the part
of the wavefunction relevant to the photoelectron. Gorczyca
and Robicheaux [18] extended the application of [19] to the
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Figure 1. The real (solid line) and the imaginary (dotted line) parts
of the F1(r) function of equation (2) for an energy of 0.0735 au
(2 eV) and a width of 0.01 au (270 meV).

optical potential relevant to the decay of a core state when a
Rydberg electron is outside of the region of space defined by
the core electrons. Although the treatment of [18] was for a
Rydberg electron outside of a core that could emit an Auger
electron, this treatment will work just as well for a continuum
electron outside of a core that can emit an Auger electron. The
main result is that the core energy is replaced by a complex
core energy

Ec → Ec − i
�c

2
, (1)

where �c is the energy width of the core.
Once the atom absorbs a photon there will be a part of

the wavefunction corresponding to the outgoing photoelectron
with an undecayed core and a part of the wavefunction
that corresponds to a double electron continuum (both the
photoelectron and the Auger electron emitted). The treatment
of [18] leads to an equation for the wavefunction corresponding
to the outgoing photoelectron with the core not decayed:(

E − Ec + i
�c

2
− Ha

)
F1 = Dφg, (2)

where E is the total energy of the system, the Dφg is the dipole
operator acting on the orbital that absorbs the photon and Ha is
the Hamiltonian for the photoelectron. At distances outside of
the core, the potential in Ha goes to −1/r. For the cases treated
in this paper, the exact form of Ha or Dφg for distances within
the core only changes the normalization of the final result.
Since we are not interested in this quantity, the potential in Ha

can be taken to be −1/r for all distances and the Dφg can be
taken to be any short range function with the correct angular
momentum as long as it is not an eigenstate of the Ha used.

Figure 1 shows the real and imaginary parts of F1(r) for
a photoelectron at 0.0735 au (2 eV) and with �c = 0.01 au
(270 meV). The trends in the function F1(r) can be understood
qualitatively. As the width �c increases, the radial extent of F1

decreases because the decay occurs more quickly. As the real
part of the energy increases, the wavelength becomes smaller
and the radial extent of F1 increases. The radial extent increases
because the photoelectron is faster at higher energy and, thus,
can reach larger distances before the core decays. The average
value of r for the case in figure 1 is 49 au which is one measure
indicating the photoelectron is well outside of the core before

the Auger decay occurs. The fraction of the wavefunction at
distances larger than 2 au is ∼98% which is the percentage
of the wavefunction that corresponds to the condition that the
photoelectron is outside of the core region when the Auger
decay occurs.

We can use the F1(r1) function as part of the source term
for the two-electron wavefunction corresponding to both the
photoelectron and Auger electron in the continuum. From
[19], the outgoing wave corresponding to the two-electron
continuum can be written as

� = 1

E − H
[F1Vopt�c], (3)

where H is the two-electron Hamiltonian and Vopt�c is the
optical potential for the Auger decay acting on the core
wavefunction �c. The function � has outgoing conditions for
both electrons. Because the F1 extends to such large distances
compared to the size of the core, the exact form of the orbital
resulting from Vopt�c is not relevant. It is only necessary that
the orbital have the correct angular momentum and be nonzero
only in the core region. As with above, the exact form of Vopt�c

strongly affects the normalization of � but hardly affects the
energy and/or angular distributions.

With equation (3), we have reduced the problem to the
solution of an inhomogeneous Schrödinger equation. This is
not a simple task due to the large region of space covered by
the photoelectron and the relatively high energy of the Auger
electron. Instead of the time-independent equation, we use
Green’s function technique of [20] to recast equation (3) into
the time-dependent equation:

i
∂�

∂t
− H� = S(t)F1(�r1)F2(�r2), (4)

where H is the two-electron Hamiltonian and we have replaced
Vopt�c by the short-range function F2 and the strength of the
source S(t) = 1/(1 + exp[10{1 − 5t/t f }]). The parameter t f

is the final time of the calculation. Formally, S(t) should be
a step function S(t) = 0 for t < 0 and S(t) = 1 for t > 0;
however, we found that results converged much better when
the step function is rounded off as in [20].

The last important step is to describe how to extract
physical parameters from the function �. Robicheaux et al
[20] discussed that the important quantities are the rate of
change of the properties calculated from the � function. For
example, the energy distribution is obtained by computing the
numerical time derivative of the probability |〈�| fE1 fE2〉|2(t)
where the continuum functions are energy normalized.

Lastly, we stress that we implemented the methods of
this section in an approximate manner. If we had used the
exact Dφg and Vopt�c in the source terms and the exact non-
local two electron H, then the treatment of this section would
be exact except for numerical approximations needed to solve
the differential equations. We have deliberately made the
choice to approximate the Dφg and Vopt�c by simple short-
range functions. The total norm strongly depends on the choice
of these functions, but the angular or energy distribution only
weakly depends on the two functions; the reason is that the
error in the two electron is from when the source has both
electrons within ∼1 − 2 au of the nucleus. As long as both
functions were of short range and not an eigenstate of the
Hamiltonian, the distributions were uncertain at the per cent
level.
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2.2. Numerical method

We use the method described in [17] to numerically solve
the inhomogeneous time-dependent Schrödinger equation. As
described in [17], we use an implicit algorithm to solve the
time-dependent equation. With the source term the sequence
of operations that moves � forward one time step is as follows:

� = � − 1
2 idtS(t)F1(�r1)F2(�r2)

� = U1(δt)U2(δt)�

� = � − 1
2 idtS(t + dt/2)F1(�r1)F2(�r2)

� = U3(δt)�, (5)

where the implicit propagator

Uj(δt) = 1 − iHjδt/2

1 + iHjδt/2
(6)

uses H3 = 1/r12 and the one-electron Hamiltonians H1 =
p2

1/2 − 2/r1 − E1 and H2 = p2
2/2 − 2/r2 − E2 are shifted in

energy so the time steps can be larger; the energies have the
condition that the total energy E = E1 + E2.

The implicit algorithm allows time steps to be more nearly
related to the physical timescale of the problem instead of
being related to the angular momentum and the grid spacing
as with an explicit method. In all of the calculations below, we
used dt = 0.24 au, but we made tests with dt = 0.12 au; the
excellent agreement with the test calculations indicates that we
could have used a dt larger than 0.24 au. As in equation (3) of
[21], the wavefunction is represented by a superposition over
coupled angular momenta with 	1 and 	2 coupled to total L
and the spins coupled to total S; we also represent the radial
functions using a grid of points. The action of the U1 and U2

operators on the wavefunction is easy to evaluate because the
H1 and H2 operators are diagonal in 	 and are taken to be
tridiagonal in r. The U1 and U2 propagators were implemented
using both a simple three-point difference and with a higher
order Numerov approximation; the Numerov approximation
gave converged results with less than 1/2 the number of points
of the simple three-point difference [17].

The main difficulty to overcome in [17] was the action
of the U3 operator on the wavefunction. We borrowed an idea
from discrete variable representation to evaluate the action
of U3 [22]. We use our coupled angular momentum states
as the orthonormal basis states |i〉 = |(	1, 	2)L〉 and the
cos(θ12) operator as the coordinate. We tested for convergence
by increasing the maximum 	 in the calculation. We found
that 	max = 10 gave results that were converged except
near cos(θ12) = 1. To obtain convergence for all angles, we
needed 	max = 15, although we performed test calculations
for 	max = 20 and 25 as well.

3. Results

Unless stated otherwise, the photoelectron in the calculations
will have an energy of 0.0735 au (2 eV) and a width of 0.01 au
(270 meV). The width matches that for the 1s hole of Ne. The
energy was chosen to closely match that for the measurements
made at the Advanced Light Source.
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Figure 2. The calculated and experimental photoelectron signal as a
function of the photoelectron energy and the cosine of the angle
between the photoelectron’s momentum and the Auger electron’s
momentum. All other variables (e.g. Auger electron’s momentum)
have been integrated over.

Figure 2 shows the photoelectron distribution with respect
to energy and cosine of the angle between the momentum
vectors of the photoelectron and the Auger electron. The theory
graph does not take into account the resolution associated
with the electron measurement or the synchrotron photon.
We present the results in this form to show that the overall
correlation between photoelectron energy and cos(θ ) is very
similar for theory and experiment. There are a couple of
generic features that have been understood for many years. The
photoelectron energy is shifted down from the initial outgoing
energy of 1.99 eV by a clear amount. This has been well
explained by the idea that the photoelectron originally has its
energy defined with respect to a potential energy of −1/r, but
after the Auger electron is emitted it suddenly experiences a
−2/r potential; this additional binding leads to a shift down in
the energy by 1/r. Since the photoelectron can be in a range
of radial distances when the Auger electron is emitted, there
is not a single shift but a distribution which is reflected in the
final spread in energies. The width of the photoelectron energy
distribution also reflects the energy width of the Auger state;
the total energy is fixed which means the energy uncertainty of
the Auger electron gets mapped onto the photoelectron energy
as well. Both of these effects are contained in the quantum
calculation and agree very well with the measurement. These
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effects have been described in detail [10, 11] and, therefore,
we do not present those results here.

The more interesting aspect of figure 2 is where there is
correlation between the two variables. In both plots, there is
little dependence with respect to cos(θ ) except near cos(θ ) =
1 and the effect is larger when the photoelectron energy is
smaller. This correlation arises because the photoelectrons
with the largest energy shift are those that are closer to
the ion when the Auger electron is ejected; thus, there is
more interaction between the electrons which leads to the
photoelectron more strongly pushed away from cos(θ ) = 1. A
less obvious feature is that the photoelectron distribution for
energies between 1.75 and 2 eV does not have the probability
decrease monotonically with increasing cos(θ ). There is a
small range of cos(θ ) between ∼ 0.8 and 0.95 where the
distribution increases giving a small hump just below cos(θ ) =
1. This effect is very pronounced in classical calculations and
arises because the photoelectron gets pushed from cos(θ ) � 1
to slightly smaller values which leads to a small peak in
probability. The properties of figure 2 near cos(θ ) = 1
seem to arise from the competition between diffraction of the
photoelectron (which tends to spread probability in cos(θ ))
and the repelling force between the two electrons which leads
to a perfect hole in the distribution at cos(θ ) = 1. Below, we
will discuss this effect from a somewhat different perspective.

Figure 3 shows a comparison between the measurements
and two different calculations of the photoelectron distribution
with respect to cos(θ ). We restrict the energy range of the
photoelectron to be between 0.5 and 2.5 eV because there
is a capture re-emission line in the data near 0.3 eV. The
previous result in [1] showed that the classical calculation
did not match the experiment and our present calculations
show similar disagreement with the CTMC results. We think
that this is interesting disagreement because the quantum
wavefunction has many nodes over the relevant region and
the angular distribution involves averaging over all but one
of the wavefunction’s degrees of freedom. Thus, this system
seems ripe for a classical treatment but clearly there is some
strongly non-classical property of this system. We will address
this below.

The good agreement between the fully quantum
calculation and the measurement argues that the quantum

Figure 3. The photoelectron signal as a function of the cosine of the
angle between the photoelectron’s momentum and the Auger
electron’s momentum. The photoelectron energy has been integrated
over from 0.5 to 2.5 eV and all other variables have been fully
integrated over. Solid line is experiment, dotted line is quantum
calculation, and the dashed line is the CTMC calculation.

calculation is accurately capturing the relevant physics of this
system. However, there is a slight disagreement which could be
due to three possibilities. First, the calculation was performed
for total L = 0 whereas the actual two-electron wavefunction
is a superposition of states with the two outgoing electrons
coupled to L = 0, 1, 2 or 3. Second, the wavefunction is
only accurate when neither electron is within ∼1 au of the
nucleus; perhaps a small correction to the wavefunction in this
region would increase the agreement. Third, the experiment
could have slight systematic errors, limited statistics, or limited
resolution that leads to the difference; for example, there are
a couple of capture re-emission lines which could affect the
angular distribution at this level.

Figure 4 shows how the angular distribution evolves
with the Auger energy, keeping the photoelectron energy
fixed at 0.0735 au (2 eV) and the Auger width at 0.01 au
(270 meV). Both of the quantum and the classical calculations
show a similar trend although the detailed results differ. As
the energy of the Auger electron is decreased, the angular
range where there is depleted probability is increased and the
range where there is increased probability becomes larger. In

Figure 4. Same as figure 3 except the photoelectron energy is integrated over from 0 to 2.5 eV. All lines are from calculations using different
Auger energies. Solid line is for 800 eV (29.4 au), dotted line is for 16 au, dashed line is for 8 au, dash–dot line is for 4 au and
dash-dot–dot-dot is for 2 au. Figure (a) is the quantum calculation and (b) is the CTMC calculation.
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Figure 5. The squares show the Legendre transform of the quantum
photoelectron angular distribution and the triangles are the
transform of the CTMC results. The + is the square root of the
quantum population as a function of 	 for a calculation with
	max = 10, the ∗ is the same for a calculation with 	max = 15, and
the diamonds are the same for a calculation with 	max = 20.

the classical calculation, there is always zero probability for
cos(θ ) = 1 because the fast Auger electron always scatters the
photoelectron out of its path. The quantum calculation does
not give zero probability for the electrons coming out in the
same direction; however, as the Auger energy decreases, the
probability at cos(θ ) = 1 decreases. By changing to different
atomic/molecular systems, the Auger energy can be controlled.
Thus, it might be possible to see this trend experimentally.

We also performed calculations where we kept the Auger
energy fixed and varied the photoelectron energy from 0.05 to
0.30 au (1.36–8.16 eV). We found that the angular distribution
for the photoelectron energy between 0.1 and 0.3 au did
not strongly differ. The results for the 0.05 au calculation
gave stronger scattering which led to a somewhat deeper
dip at cos(θ ) = 1 and a somewhat larger peak in the
angular distribution. It is understandable that the 0.05 au
calculations gave the largest scattering because the distance
the photoelectron travels before the Auger decay decreases
with decreasing energy; thus, the 0.05 au case will have the
largest electron–electron interaction.

4. Source of classical error

Using the quantum wavefunction, we can address the question
about why the quantum calculation differs from the classical
calculation, which we found to be somewhat surprising. The
wavelength of the Auger electron and photoelectron in the
−1/r potential is short enough that both electrons have several
wavelengths in the physically relevant region. We show in
figure 5 the magnitude of the Legendre polynomial transform
of the quantum and classical results and the square root of the
	-probability in our wavefunction. The Legendre polynomial
transform is defined as

P	 = √
2	 + 1

∫ π

0
P	(cos θ )P(cos θ ) sin θ dθ, (7)

where P(cos θ ) is the population as a function of θ . We have
normalized all of the results to 1 for the 	 = 0 component.
We have only shown the classical and quantum transforms

out to 	 = 10 because fluctuation noise in the classical
calculation leads to questionable results for larger 	. The
classical and quantum transforms give similar values for 	 � 3,
but differ strongly for higher 	 with the classical transform
having substantially more population in higher 	. This is
understandable because the larger population in higher 	 is
necessary to obtain a sharp angular feature in the classical
population and it is the lack of these angular momenta in
the quantum calculation that leads to the smaller variation in
population near cos(θ ) = 1. Also shown in the figure is the
square root of the population for three different calculations:
	max = 10, 15 and 20. Since most of the quantum population
is in 	 = 0, the Legendre transform of the quantum calculation
will be approximately proportional to the amplitude 	 =
0 times the amplitude in 	. For 	 � 3, the Legendre transform
of the quantum results tracks the amplitude for the quantum
wavefunction to have that 	. Thus, the lack of population in
the higher angular momentum in the quantum wavefunction is
the reason why the classical calculation does not give
quantitative agreement with the quantum calculation. As a
side note, we found that the most difficult point to converge in
the quantum calculation was cos θ = 1. As 	max increased,
the population at cos θ = 1 decreased until convergence
was achieved because the smaller 	max calculations had the
population as a function of 	 decreases too quickly.

Another way to interpret this result is that the diffraction
of the electron wavefunction causes the fine structure in the
classical calculation to be blurred. The scattering of the two
electrons leads to a hole in the wavefunction where �r1 = �r2. As
the energy of the Auger electron increases, the size of this hole
decreases because the distance of closest approach scales like
1/E. However, the wavelength of electron 1 is roughly fixed.
Thus, the hole at cos(θ12) = 1 can be filled by diffraction
for the higher Auger energies. The two interpretations of the
limitations of the classical calculations seem to be completely
different but are actually the same thing. The small number of
	 in the wavefunction is the basis set realization of the wave
diffraction in cos(θ12).

5. Summary

We performed fully quantum calculations for the situation
where a slow photoelectron interacts with a much higher
energy Auger electron which is emitted from the atom
a few femtoseconds after the photoelectron is launched.
We obtained good agreement with experimental results.
We used the calculated wavefunction to understand why
classical calculations did not give a good representation of
the experiment.

The results of this paper gives the first successful
comparison of the method in [17]. The method we used
to propagate the wavefunction is suited to handle situations
where the two-electron wavefunction needs many angular
momentum, covers a large region of space and/or needs very
long time propagation. We plan to adapt the calculations to
other situations (e.g. two interacting Rydberg electrons) which
could give trouble to other methods.
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